TECHNICAL DATA SHEET

TSI12-1000

High performance silicone interface for thermal management

Reference: 04 TSI12100 00

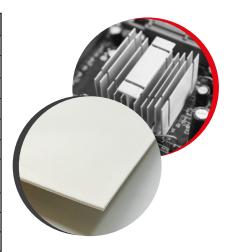
Product profile

Release liner: White PE liner siliconized on one side

Material: Silicone with fillers

Release liner: Transparent PET liner siliconized on one

side (50 µm)



With its unique and highly innovative construction, TSI12-1000 product is designed for the following applications: thermal management, heat-sink thermal interface, LED lighting thermal management.

Technical properties

	Test method	Value
Thickness - without liner (µm)	-	1000
Density	-	2.3
Hardness, Bulk Rubber (Shore 00)	ASTM D2240 at 30s	50
Young modulus (kPa)	ASTM D575	140
Thermal conductivity (W/m.K)	ASTM D5470	2
Heat Capacity (J/g.K) (at 20°C)	ASTM E1269	1.0
Electric breakdown voltage (V)	ASTM D 149	AC: 11000 DC: 21000
Volume resistivity (Ω.cm)	ASTM D257	10 ¹¹
Flammability	UL 94	V0
Continuous use temperature (°C)	Internal	- 60 to 200

Product features

- European product (technology and manufacturing)
- Silicone oil free (no leakage / low outgazing)
- · Wide web process, designed for large volume
- · Tacky surface on both sides

Storage

Store in dry conditions between 10 °C and 35 °C in its original packaging. Use within 12 months after delivery.

Compression ratio	Compression force (N/6,4cm²)	
10 %	12	
20 %	44	
30 %	74	
40 %	91	
50 %	115	
Sustain 50 %	46	

- Test method: ASTM D575-91 for reference
- Specimen diameter: 28.6mm
- Platen diameter: 28.6 mm
- Compression velocity: 5 mm /min
- Sustain 50 %: Remaining force after 1min at 50 % compression ratio

This document does not constitute a specification. The information provided in this document is given in good faith, according to the tests made in our laboratory. The values given are typical values and may vary according to application conditions. They are given for information only and do not constitute a warranty. It is the responsibility of the purchaser to determine prior to use the suitability of this material in its application. Revised: January 09th 2025

TECHNICAL DATA SHEET

TSI12-2000

High performance silicone interface for thermal management

Reference: 04 TSI12200 00

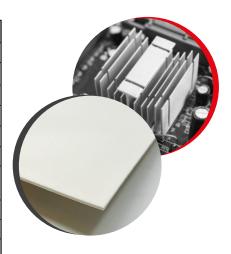
Product profile

Release liner: White PE liner siliconized on one side

Material: Silicone with fillers

Release liner: Transparent PET liner siliconized on one

side (50 µm)



With its unique and highly innovative construction, TSI12-2000 product is designed for the following applications: thermal management, heat-sink thermal interface, LED lighting thermal management.

Technical properties

	Test method	Value
Thickness - without liner (µm)	-	2000
Density	-	2.3
Hardness, Bulk Rubber (Shore 00)	ASTM D2240 at 30s	50
Young modulus (kPa)	ASTM D575	250
Thermal conductivity (W/m.K)	ASTM D5470	2
Heat Capacity (J/g.K) (at 20°C)	ASTM E1269	1.0
Electric breakdown voltage (V)	ASTM D 149	AC: 20000 DC: 38000
Volume resistivity (Ω.cm)	ASTM D257	10 ¹¹
Flammability	UL 94	V0
Continuous use temperature (°C)	Internal	- 60 to 200

Product features

- European product (technology and manufacturing)
- · Silicone oil free (no leakage / low outgazing)
- · Wide web process, designed for large volume
- · Tacky surface on both sides

Storage

Store in dry conditions between 10 $^{\circ}\text{C}$ and 35 $^{\circ}\text{C}$ in its original packaging. Use within 12 months after delivery.

Compression ratio	Compression force (N/6,4 cm²)
10 %	28
20 %	78
30 %	106
40 %	158
50 %	234
Sustain 50 %	123

- Test method: ASTM D575-91 for reference
- Specimen diameter: 28.6 mm
- Platen diameter: 28.6 mm
 Compression velocity: 5 mm /min
- Sustain 50 %: Remaining force after 1min at 50 % compression ratio

This document does not constitute a specification. The information provided in this document is given in good faith, according to the tests made in our laboratory. The values given are typical values and may vary according to application conditions. They are given for information only and do not constitute a warranty. It is the responsibility of the purchaser to determine prior to use the suitability of this material in its application. Revised: January 09th 2025

